印染废水降解方法4
上期介绍了零价铁符合工艺中铁的投放对水处理的影响。本期为您带来降解原理和展望。
4 零价铁复合工艺对于印染废水的降解作用
零价铁不仅资源丰富,来源广泛,而且由于其固体形态能够方便地应用于实际工程中。同时,零价铁能够与多种水处理工艺联用,引发一系列的协同效应,如吸附、共沉淀、内电解、氧化还原作用等。下面介绍几种零价铁复合工艺对印染废水的降解作用。
4.1 零价铁/过氧化氢工艺〔高级Fenton反应〕
Fenton反应是一种高级氧化反应,其主要作用机理是以亚铁离子〔Fe2+〕作为催化剂,与氧化剂过氧化氢〔H2O2〕相互反应,产生羟基自由基〔˙OH〕。˙OH具有极强的氧化性,能够降解绝大部分的有机污染物
零价铁同样能够在具有H2O2的溶液中发生Fenton反应。在酸性条件下,零价铁通过腐蚀作用生成Fe2+与氢气〔H2〕。
反应方程式〔8〕中生成的Fe2+会通过反应方程式〔6〕迅速与H2O2反应,生成Fe3+。这些Fe3+在零价铁表面发生快速的氧化还原反应,再次生成Fe2+〔见反应方程式〔9〕〕〔34, 35〕。这个系列反应被称为高级 Fenton反应 图 1 高级Fenton反应机理〔29〕
高级Fenton反应对于有机染料具有良好的降解效果。S. F. Kang等〔36〕的研究表明,高级Fenton反应对有机染料中色度的去除主要依赖于Fenton的氧化作用,而COD的去除主要依赖于Fenton的混凝作用,且Fenton反应对色度的去除效率在5 min内可以达到90%,但对COD的去除效果没有这么明显。Tao Zhou等〔37〕运用Fenton反应降解含有偶氮染料活性黑5〔RB5〕和乙二胺四乙酸〔EDTA〕的模拟有机染料废水,发现在3 h后,RB5和EDTA的去除率均达到90%以上,展现了良好的降解效率。
4.2 零价铁-厌氧消化
厌氧消化是一种能够同时达到污染控制和能量回收双重作用的高效污水处理工艺,广泛应用于多种工业废水的水体修复。在厌氧条件下,厌氧微生物能够稳定高效地降解有机物,并产生沼气、甲烷和氢气等新型能源。然而,厌氧消化系统对高浓度印染废水的降解效果却不是十分理想。原因可能是,厌氧消化反应在降解有机染料时,没有足够的电子供体来劈断染料的发色基团〔38, 39〕。
零价铁作为一种强还原剂,在厌氧消化反应中能够作为电子供体供给电子,形成一个更高效的零价铁-厌氧消化系统。同时,零价铁在厌氧条件下能够避免被氧化而失去活性,使零价铁的自身性质更趋于稳定,解决了零价铁易氧化的问题。此外,零价铁腐蚀释放出的Fe2+还能够在厌氧消化反应中起到酸缓冲剂和絮凝剂的作用。
零价铁-上流式厌氧活性污泥床〔ZVI-UASB〕复合工艺是零价铁与厌氧消化作用复合应用的典型代表。其对有机染料的降解效率大大高于独立的UASB反应器,并具有受温度变化影响小,在相同处理效果下水力停留时间短,微生物菌株呈多样性,菌株对有机染料的降解能力增强等优势,证明了零价铁与厌氧消化系统具有显著的协同效果。
4.3 展望
零价铁及其复合工艺对于印染废水的降解具有效率高、成本低、反应时间短等优点,是一种具有广泛应用价值和良好应用前景的新型水处理技术。
然而基于零价铁的水处理技术在处理印染废水时,仍然具有很多需要解决的技术难点。如零价铁在降解印染废水时,容易被其还原产物附着在零价铁表面,形成表面隔离层,阻碍降解的进一步进行;此外,零价铁降解印染废水的一些还原产物,被证实具有潜在致癌性,可能具有一定的环境风险〔4〕。为了实现零价铁技术处理印染废水的规模化应用,今后需对这些技术难点进行深入的研究,使该技术逐步趋于完善。